揭秘!头条号推荐机制背后的真相!
在所谓的微信红利期已过的声浪之下, 很多自媒体人纷纷转向多平台分发,其中最大的平台就是今日头条了,累积活跃用户达到7亿。
在分发的过程中,我们经常发现,同一篇文章发布在公众号的阅读量可能很高,但在今日头条上的数据却不尽如人意。
造成如此差别的原因在哪?主要的根源就在于两者在订阅关系上的区别。
01、今日头条与公众号
对于微信公众号来说,用户与微信公众号的关系是一对一的,用户量的大小是影响阅读量的最大因素。
而今日头条虽然也存在着订阅关系,但是用户的大部分阅读来源都是来自于算法推荐,所以用户与自媒体的关系是靠算法维系的。
算法推荐有利有弊,对于自媒体来说,其内容能够实现精准的投放,内容的转化效率较高,但是用户被平台掌握在手中,头条号只能依附于平台。
“你关心的,才是头条”。正是基于算法,7亿人有7亿种不同的头条。正是倚赖于算法推荐,新手在头条号上也能兴起风浪。
所以今日头条给新手提供了一个相对有利的机制,内容的价值得以充分体现。只要内容优质,就能够容易获得曝光。
在入驻各大平台前,对今日头条算法推荐机制要进行深入地了解,以达到事半功倍的效果。
02、今日头条推荐机制
那么一篇文章在到达用户的今日头条APP上之前,都经历了哪些步骤?
今日头条官方透露了其中有审核、消重、推荐三个流程。
一、审核
现有的审核包括机器审核和人工审核,机器审核为主,人工审核为辅。机器和人工会对文章进行过滤,根据文章具体情况,决定是否推荐给用户。审核一般发生在 3-5分钟内,最迟不会超过24小时。
无论哪种审核,只要文章出现以下内容的话,文章就不会被推荐。
这些可能是常犯的错误:
标题含敏感信息,如天朝、棒子、金三胖……
涉嫌不雅或恶俗,如卧槽、傻逼、日了狗……
发布网络上4天前存在的旧闻。
含有推广、广告、恶意推广信息等。
文章过审后,作者也可以进行修改,提交后重新审核。不过平台不鼓励反复修改文章,反复修改对文章的及时发布和推荐有负面影响。修改次数达3次或3次以上的文章,系统可能做出不推荐处理。
二、消重
头条号发布的内容,在通过审核和进入推荐系统之间,还有一道「难关」,那就是「消重机制」,消重机制主要是为了保证用户体验,防止用户在同一时间阅读到大量雷同的文章。
数据表明,被「消重」是头条号所发布内容无推荐量的最常见的原因。
一是,是否为权威媒体或者原创。
主要从以下维度进行判断:
1)是否开通「原创」标记;
2)发布时间;
3)来源的权威性和在网络上被引用的次数。
如果是权威媒体或原创内容,那么文章就会作为主要推荐,这就解释了为什么非原创的内容无法在今日头条获得推荐量的原因。
其中原创的权重要大于权威,如果没有原创,那么系统将推荐权威的内容。
比如说说相似度很高的两篇内容,自媒体先发但没申请原创,而央视作为权威媒体后发,那么系统推荐央视的内容可能性更大。
二是,相似主题消重。
当热点出现的时候,很多人都会进行借势,这样会造成刷屏,系统为了保证用户体验,就会启动对「相似主题」的消重。
所以想在今日头条上抢热点,首先必须速度快,其次角度、观点都必须新颖,要不然就会被打入冷宫了。
三是,标题和封面图相似的话也会被消重。
所以想要躲开消重机制,有三个要诀:坚持原创、谨慎借势、标题新颖。
三、推荐
推荐也包含了几个流程:一是文章内容识别,二是受众群体匹配,三是分批次推荐。
文章内容识别
内容识别就是对文章进行贴标签的一个过程,系统会根据文章出现频率提取关键词,从而进行判定。
所以在行文的时候用词必须规范,少去使用用烂了的网络用语,如活久见、腿玩年、城会玩等,会使文章的标签模糊。
此外,提取了关键词后,系统还会将关键词与标题进行比对,所以标题党的玩法在头条是玩不动的,题文相符才能获得更多推荐。
受众群体匹配
当用户下载并注册今日头条之后,今日头条APP便对用户的基本信息便有一定的了解,比如性别、年龄、城市、使用机型、常用APP等等。这是最初始的用户画像。
其次,系统会根据用户主动订阅或喜欢的内容进行推荐,这是优化用户画像的过程。
最后是用户画像的确定,但用户阅读的文章越多,系统对用户画像就更精准,比如对用户阅读的文章分类、关键词和不感兴趣进行计算。
分批次推荐
将用户画像和文章关键词匹配,就可以进行推荐了,不过系统在推荐时并不会全量推荐,而是会分批次推荐给对其感兴趣的用户。
文章首先会被推荐到和文章最为匹配的用户受众,而这些用户产生的交互数据将决定了系统是否加大推荐的范围。
其中的数据包括点击率、收藏数、评论数、转发数、读完率,页面停留时间等,其中,点击率占的权重最高。
所以文章的影响力能有多大,还得看内容是否优质,才能获得好的用户响应。同理,用户如果举报文章,那么文章的推荐量肯定会下滑。
关于推荐量的影响因素,详见下图:
03、有推荐,没阅读?
文章被推荐了,但阅读量却寥寥无几?这是很多头条作者的困扰所在。
事实上,我们理一理不难发现,文章的阅读量由系统推荐量有关,同时推荐量又取决于上一轮推荐的互动数据。
所以单篇文章推荐效果不好,有三个原因:点击率低、推荐量低、阅读量低。
一、点击率低
点击率较低可能是如下原因导致:
账户内容垂直度低,或者发布与擅长领域不相关的文章,导致系统没有及时推荐给用户。
比如一个体育类账号,却为了追热点,发了王宝强马蓉离婚的消息,那么系统就会对内容进行重新识别分类再进行推荐,这就导致推荐不及时。
其次可能是文章自身问题,导致点击率低。
2.推荐量低
推荐量是决定阅读量大小的重要因素,推荐量低的主要原因有:
点击率过低,将会影响推荐量。
潜在的用户群过小,推荐量不高。
内容供过于求。
消重机制会影响推荐量。
时效短,影响推荐量。
审核中被拦截,内容不被系统推荐,可详见文章审核部分。
3.阅读量低
文章阅读量低,与推荐量和点击率有关。
推荐量低
推荐量是决定阅读量的首要要素,有了推荐才有阅读,所以回到第二个问题。
点击率低
我们经常看到推荐量很高,但阅读量低,这就很可能是因为点击率低。这就回到第一个问题了。
作者:胡桃苑
链接:http://www.jianshu.com/p/b66a6bf57aba
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。